Copied to
clipboard

G = C22×C3.A4order 144 = 24·32

Direct product of C22 and C3.A4

direct product, metabelian, soluble, monomial, A-group

Aliases: C22×C3.A4, C23⋊C18, C241C9, C22⋊(C2×C18), C6.7(C2×A4), (C2×C6).5A4, C3.(C22×A4), (C22×C6).3C6, (C23×C6).1C3, (C2×C6).2(C2×C6), SmallGroup(144,110)

Series: Derived Chief Lower central Upper central

C1C22 — C22×C3.A4
C1C22C2×C6C3.A4C2×C3.A4 — C22×C3.A4
C22 — C22×C3.A4
C1C2×C6

Generators and relations for C22×C3.A4
 G = < a,b,c,d,e,f | a2=b2=c3=d2=e2=1, f3=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, fdf-1=de=ed, fef-1=d >

Subgroups: 159 in 68 conjugacy classes, 25 normal (10 characteristic)
C1, C2, C2, C3, C22, C22, C6, C6, C23, C23, C9, C2×C6, C2×C6, C24, C18, C22×C6, C22×C6, C3.A4, C2×C18, C23×C6, C2×C3.A4, C22×C3.A4
Quotients: C1, C2, C3, C22, C6, C9, A4, C2×C6, C18, C2×A4, C3.A4, C2×C18, C22×A4, C2×C3.A4, C22×C3.A4

Smallest permutation representation of C22×C3.A4
On 36 points
Generators in S36
(1 32)(2 33)(3 34)(4 35)(5 36)(6 28)(7 29)(8 30)(9 31)(10 21)(11 22)(12 23)(13 24)(14 25)(15 26)(16 27)(17 19)(18 20)
(1 23)(2 24)(3 25)(4 26)(5 27)(6 19)(7 20)(8 21)(9 22)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 28)(18 29)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)
(1 23)(2 33)(3 14)(4 26)(5 36)(6 17)(7 20)(8 30)(9 11)(10 21)(12 32)(13 24)(15 35)(16 27)(18 29)(19 28)(22 31)(25 34)
(1 12)(2 24)(3 34)(4 15)(5 27)(6 28)(7 18)(8 21)(9 31)(10 30)(11 22)(13 33)(14 25)(16 36)(17 19)(20 29)(23 32)(26 35)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)

G:=sub<Sym(36)| (1,32)(2,33)(3,34)(4,35)(5,36)(6,28)(7,29)(8,30)(9,31)(10,21)(11,22)(12,23)(13,24)(14,25)(15,26)(16,27)(17,19)(18,20), (1,23)(2,24)(3,25)(4,26)(5,27)(6,19)(7,20)(8,21)(9,22)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,28)(18,29), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36), (1,23)(2,33)(3,14)(4,26)(5,36)(6,17)(7,20)(8,30)(9,11)(10,21)(12,32)(13,24)(15,35)(16,27)(18,29)(19,28)(22,31)(25,34), (1,12)(2,24)(3,34)(4,15)(5,27)(6,28)(7,18)(8,21)(9,31)(10,30)(11,22)(13,33)(14,25)(16,36)(17,19)(20,29)(23,32)(26,35), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)>;

G:=Group( (1,32)(2,33)(3,34)(4,35)(5,36)(6,28)(7,29)(8,30)(9,31)(10,21)(11,22)(12,23)(13,24)(14,25)(15,26)(16,27)(17,19)(18,20), (1,23)(2,24)(3,25)(4,26)(5,27)(6,19)(7,20)(8,21)(9,22)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,28)(18,29), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36), (1,23)(2,33)(3,14)(4,26)(5,36)(6,17)(7,20)(8,30)(9,11)(10,21)(12,32)(13,24)(15,35)(16,27)(18,29)(19,28)(22,31)(25,34), (1,12)(2,24)(3,34)(4,15)(5,27)(6,28)(7,18)(8,21)(9,31)(10,30)(11,22)(13,33)(14,25)(16,36)(17,19)(20,29)(23,32)(26,35), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36) );

G=PermutationGroup([[(1,32),(2,33),(3,34),(4,35),(5,36),(6,28),(7,29),(8,30),(9,31),(10,21),(11,22),(12,23),(13,24),(14,25),(15,26),(16,27),(17,19),(18,20)], [(1,23),(2,24),(3,25),(4,26),(5,27),(6,19),(7,20),(8,21),(9,22),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,28),(18,29)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36)], [(1,23),(2,33),(3,14),(4,26),(5,36),(6,17),(7,20),(8,30),(9,11),(10,21),(12,32),(13,24),(15,35),(16,27),(18,29),(19,28),(22,31),(25,34)], [(1,12),(2,24),(3,34),(4,15),(5,27),(6,28),(7,18),(8,21),(9,31),(10,30),(11,22),(13,33),(14,25),(16,36),(17,19),(20,29),(23,32),(26,35)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)]])

C22×C3.A4 is a maximal subgroup of   C23.D18  C3.A42  C24⋊3- 1+2  C2423- 1+2  A4×C2×C18
C22×C3.A4 is a maximal quotient of   2+ 1+4⋊C9  2- 1+4⋊C9

48 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B6A···6F6G···6N9A···9F18A···18R
order12222222336···66···69···918···18
size11113333111···13···34···44···4

48 irreducible representations

dim1111113333
type++++
imageC1C2C3C6C9C18A4C2×A4C3.A4C2×C3.A4
kernelC22×C3.A4C2×C3.A4C23×C6C22×C6C24C23C2×C6C6C22C2
# reps13266181326

Matrix representation of C22×C3.A4 in GL4(𝔽19) generated by

18000
01800
00180
00018
,
18000
0100
0010
0001
,
7000
0100
0010
0001
,
1000
0100
00180
00018
,
1000
01800
00180
0001
,
9000
0010
0001
0100
G:=sub<GL(4,GF(19))| [18,0,0,0,0,18,0,0,0,0,18,0,0,0,0,18],[18,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[7,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,18,0,0,0,0,18],[1,0,0,0,0,18,0,0,0,0,18,0,0,0,0,1],[9,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0] >;

C22×C3.A4 in GAP, Magma, Sage, TeX

C_2^2\times C_3.A_4
% in TeX

G:=Group("C2^2xC3.A4");
// GroupNames label

G:=SmallGroup(144,110);
// by ID

G=gap.SmallGroup(144,110);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-2,2,68,556,989]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^3=d^2=e^2=1,f^3=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations

׿
×
𝔽